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We introduce the construction of a new framework for probing discrete emergent geometry and
boundary-boundary observables based on a fundamentally a-dimensional underlying network struc-
ture. Using a gravitationally motivated action with Forman weighted combinatorial curvatures and
simplicial volumes relying on a decomposition of an abstract simplicial complex into realized em-
beddings of proper skeletons, we demonstrate properties such as a minimal volume-scale cutoff, the
necessity of a positive-definite cosmological constant-like term as a regulator for non-degenerate
geometries, and naturally emergent simplicial structures from Metropolis network evolution simula-
tions with no restrictions on attachment rules or regular building blocks. We see emergent properties
which echo results from both the spinfoam formalism and causal dynamical triangulations in quan-
tum gravity, and provide analytical and numerical results to support the analogy. We conclude with
a summary of open questions and intent for future work in developing the program.
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I. MOTIVATION

At the quantum gravity scale, we do not expect space-
time to have a manifold structure [1]. Geometry and
associated operators such as volumes should be given
by expectation values over a quantum superposition of
states, which under a coarse macroscopic limit, return
to a familiar metric construction. Frameworks such as
perturbative string theory require a background metric,
and as a result may not provide insight into the foun-
dational structure of spacetime in the regime where the
background does not admit a metric topology [2]. Canon-
ical efforts such as the covariant spinfoam framework of
loop quantum gravity attempt to address these ques-
tions more directly without presupposing a background.
The spinfoam quantization of a constrained topological
background field (BF) theory is based on an arbitrary
simplicial decomposition of an underlying base manifold
[3]. The construction admits non-simplicial states–those
where the quantum nature of the geometric operators
only loosely impose the constraint conditions for proper
geometries. These states are argued to peak to clas-
sical geometries in the appropriate limit; however, one
must prescribe which dimensional BF theory one hopes
to quantize, and as such, the literature is filled with work
on 3d and 4d spinfoam models as quantizations of 3d and
4d gravity [4]. Although these models are tremendous
achievements toward a geometric and non-perturbative
understanding of quantum gravity, here we take the per-
spective that absolute emergent dimensionality might be
a property which a good theory of quantum gravity could
hope to explain.
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Causal dynamical triangulations (CDTs) are models
which formalize the path integral notion of Hawking’s
‘sum over geometries’ approach to quantum gravity and
rely on the layer-by-layer oriented construction of a tri-
angulation under the evaluation of the Regge Action, the
triangulation discretization of the Einstein-Hilbert action
[5]. CDTs aim to shed light on such emergent dimension-
ality considerations. A long history of Euclidean triangu-
lations is brimming with work detailing highly divergent
path integrals or phases of emergent geometries with ei-
ther Hausdorff dimension two or infinite [6]. CDTs are
successful in finding a regime where a classical spacetime
of spectral dimension four can be recovered [7]. It is the
highly restricted nature of the paradigm with 4-simplex
building blocks and constrained attachment rules which
additionally forbid topology changes or branching geome-
tries that ultimately admits this novel classical phase.
Understanding why this limit arises or whether other con-
ditions can generate similar behavior is the aim of current
work in the field.
The goal of the construction to follow is to investigate
the limit of Euclidean classical geometries emerging from
a fundamentally combinatorial network framework which
does not presume the properties of an underlying trian-
gulation. The field of emergent networks is a highly ac-
tive area of research where the physical applicability of
a model is often determined a posteriori to the growth
paradigm. Here, we attempt to make rigorous a stochas-
tic growth paradigm which is designed specifically to
probe questions in emergent simplicial geometry without
guiding the growth structure ‘by hand’, starting with a
basic combinatorial structure and asking in what limits
can it be demonstrated to contain substructures which
approximate more familiar geometric constructions. If
quantum geometry admits such a description, an analyt-
ical handle on emergent near-simplicial manifolds with
non-simplicial defects may be obtained which will facil-
itate a better understanding of the semiclassical limit
for the very strange quantum structures we expect at
that scale. Observational evidence and phenomenologi-
cal bounds for a discrete structure to our universe could
be ascertained by studying precisely such defects [8][9].
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II. BRIEF SUMMARY

The framework we develop has two complementary pic-
tures. On one side, we define a space of states with
boundaries built from a highly constrained, purely com-
binatorial structure. Every such state admits a represen-
tation as an embedded abstract simplicial complex with
geometric realization at the skeletal levels. On this space,
we define a Euclidean action which is a heuristic combina-
torial analogue of the Regge action. We study the prop-
erties of this system and can sample the action-weighted
space of states through traditional Markov Chain Monte-
Carlo (MCMC) sampling techniques.

On the other side of the framework, we consider a
space of unconstrained states consisting of embedded
undirected networks with boundaries. We consider a
stochastic process on the space of emergent networks and
seek to sample the distribution of optimized final states
for a finite horizon directed growth procedure under the
evaluation of a scalar cost function.

We show through the explicit construction of the sur-
jective covering that the space of embedded emergent
networks can be mapped onto our combinatorial state
space of interest. Equating the cost function with the
combinatorial action, the optimization procedure on the
embedded graph states translates into an importance
sampling on the combinatorial space, generating an en-
semble which is peaked around the minima of the action
and allows for discrete topological observables to be com-
puted against the states near classical fixed-points.

III. STATE SPACES

We first take the opportunity to rigorously define the
space of states, both on the combinatorial side with Ψm

representing the gauge fixed space of physical states, and
in the emergent network picture with G̃m as the cor-
responding embedded graph space. Once this is estab-
lished, we will demonstrate the covering between the
spaces with an explicit construction of the map. We can
initially set aside any boundary considerations, defining
a generic bulk state instead. The addition of boundaries
will be shown to constrain the spaces, but will not impede
the general construction.

A. Combinatorial State Definition

A state φm ∈ Ψm can be represented by a simple
(excludes single-node loops and multi-edges between the
same nodes) graph, where V is the vertex set:

{vi}|{vi ∈ V ∀ i ∈ [|V |]} ; (1)

and E is the edge set:

{(vi, vj)}|{(vi, vj) ∈ E} . (2)

This graph has a number of distinct properties that
we will detail: it is leveled, rooted, directed, weighted,
and constrained. These properties make the state space
difficult to numerically sample, as it is challenging to es-
tablish a random walk on this space which can be used in
traditional MCMC methods. However, our use of an un-
constrained covering will provide us with a relaxed space
that is much more amenable to simulation and lends us
a tool for studying Ψm through projection.

A graph representation of the combinatorial state is
first constructed by distinguishing a vertex subset as
roots. From these roots, all edges will be directed with an
outward orientation. The rest of the vertices in the state
are divided into further subsets denoted ‘levels,’ which
we will now define through the use of directed paths, or
‘dipaths.’

Let us denote rooted dipaths of edge cardinality d (di-
rected paths starting at a root vertex and containing d
edges in the graph) as Pd. The state has maximal dipaths
Pm, and the leveled vertex subsets are indexed by the
order of the dipath arriving at that vertex, 0 ≤ d ≤ m.
Strictly, each level consists of the vertex subsets defined
by the union of the terminals T of Pd,

V |d ≡ ∪ivi | {vi = T (Pd)∀Pd} . (3)

For example, the set of vertices at level d = 0, V |0, con-
stitute the roots of the graph, while all vertices arrived
at by following dipaths from roots through 2 consecutive
edges are vertices at level d = 2, V |2. The outward orien-
tation of the edges is propagated through this structure,
with the foot and head of each edge directed from lower
to higher leveled vertices. Furthermore, edges are con-
strained to connect only vertices at level d with those at
level d− 1. That is, no edge can ‘skip’ over a level.

Lastly, there is a weighting ωαd
∈ R+ assigned to each

vertex. We illustrate this structure in Fig. 1 for an ex-
ample state φm.

FIG. 1: Representative of a Combinatorial State
We draw the reader’s attention both to the roots of the
graph at the 0 level indicated by the outward orientation
of all of the directed edges (and the corresponding 0 labels
on the weights), and the linked structure of the 3 levels.
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We can now repackage the levels Vd into a data struc-
ture that also defines the connectivity data between each
level. We parameterize our state in terms of adjacency
data K∗ and weights ωαd

, where K∗ = tmd=0K
∗
d and each

K∗d is an ordered set which specifies data at a given level.
As demonstrated in Fig. 1, we maintain α as a vertex
label on the indexing set α ∈ [|K∗d |] for each level.

To define the data structures K∗d , we take each vertex’s
αd to encode the unique subset {α0, . . . , α0} of d+1 root
vertices which the dipaths terminating at αd originate
from. To give an explicit example from our state in Fig. 1,
the left-most vertex on level 1 is connected to the two
left-most roots, and thus has the following αd structure:

αd = 11 = {10, 20} . (4)

The structures on the roots are themselves defined im-
plicitly as the singletons

α0 ≡ {α} ∀α ∈ [|K∗0 |] . (5)

Uniqueness is characterized by |αd∩βd| < |αd| ∀ (β 6= α).
To illustrate the K∗ structure of Fig. 1, we enumerate

the components of the disjoint union at each level with a
lexicographical ordering imposed on the roots as follows:

K∗0 = {({1}, 1), ({2}, 2), ({3}, 3), ({4}, 4)} ;

K∗1 = {({1, 2}, 1), ({1, 3}, 2), ({2, 3}, 3), ({2, 4}, 4)} ;(6)

K∗2 = {({1, 2, 3}, 1)} .

The reason for this parameterization and particular
choice of labeling will become clear in Eq. 10 when we
define the projection from the embedded picture onto
this combinatorial description, where such a structure is
natural. We will see that the graph levels correspond to
projections of skeletal decompositions of our embedded
state, with each vertex corresponding to a geometrically
realized simplex of order d and simplicial volume ωαd

.
For further insight into the structure, we note that if

one were to remove the vertices at level 1 and instead let
the roots continuously connect in an undirected fashion
through the structure prescribed by K∗1 , one would see
that all vertices at level d can be be traced back to cliques
(complete subgraphs wherein every vertex is connected to
every other vertex in the subgraph) of order d+ 1 in the
joined root graph. Referring back to our example state in
Fig. 1, tracking back the highest vertex 12 yields the roots
{1, 2, 3}, which would form a clique of order 3 between
their connections via level 1. We note that not every
clique one could form between the roots automatically
induces a vertex in the full state, however, and it is this
distinction that encodes many of the geometric defects in
the embedded picture.

In addition to the defining properties of this parame-
terization, there are a host of combinatorial inequalities
that must be enforced on the weights and edges to re-
strict to the state space we are interested in. These come
in the form of embeddability restrictions and weight in-
equalities such that we admit the most general combi-
natorial structure which will still be compatible with the

notions of volume and curvature that we will employ. For
a discussion on such inequalities, see App. B.

B. An Embedded State

Having defined a combinatorial state, we now intro-
duce a complementary embedded graph state which will
be mapped onto our combinatorial space, providing us
with a much more intuitive picture of the geometry at
hand and a space which is easily samplable (although
taking us a step away from our actual space of interest
and thereby requiring care in understanding what physics
we can rightfully gleam through the projection).

Let g(V,E) be an simple undirected graph.
Let χm : g 7→ g̃m be a fixed embedding of g into Rm:

χm(v ∈ V ) 7→ p ∈ Rm ,
χm((vi, vj) ∈ E) 7→ l[pi,pj ] ∈ Rm ,

with the restrictions that χm(V (g)) is injective such that
we do not allow points to be degenerate, and χm(E(g))
is the collection of unique geodesic line segments l[pi,pj ]
between connected points pi and pj . The path lengths
are thus given by the L2 norm between the embedded
point coordinates, inherited from the induced metric on
the ambient space.

We consider g̃m = g̃m(g, χm) to be our parameteriza-
tion of an embedded graph state.

In Fig. 2, we illustrate an example of such a state.
This state, under the projection that we will define in
Sec. III C, will have the same combinatorial data as our
example in Fig. 1 for a specific choice of weights. That is,
this simple graph state is equivalent to our constrained
combinatorial picture as far as the combinatorial data is
concerned.

FIG. 2: A Representative Embedded Graph State which
Projects into the State Illustrated in Fig. 1

C. From Embeddings to Combinatorics

From g̃m, we will explicitly construct the map µ which
uniquely projects onto the combinatorial space.

First, given g̃m, we can construct its ordered clique
complex. Let a complete subgraph of order d + 1 (a
(d + 1)-clique) in g be denoted αd ≡ {vi · · · vj}, where
α is a labeling on the set of complete subgraphs at fixed
order and vi are the constituent vertices. Every αd is in
bijection with a combinatorial simplex of order d. We
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form the ordered clique complex by taking the disjoint
union of simplexes associated with each complete sub-
graph. That is, define the clique skeleton at order d to
be the following:

Kd ≡ tααd | {α ∈ [|Kd|]} . (7)

This complex is an embedded abstract simplicial com-
plex. A traditional simplicial complex has stringent re-
quirements on the intersections of its simplicies such that
the intersection of two simplicies occurs as a subset of the
union of their boundaries which is also a lower dimen-
sional simplex. An abstract embedded complex has no
such restrictions. Additionally, not every complete sub-
graph in a simplicial complex actually forms a simplex,
as opposed to a clique complex. Fig. 3 illustrates this
difference.

(a) (b)

FIG. 3: A Simplicial Complex (a) and a Clique Complex
(b), both Embedded in R3

We introduce a map

Ω : α̃d → R+ (8)

which computes simplicial d-volumes of embedded cliques
α̃d. As discussed, the cliques may not have a well defined
geometric realization under χm and as a result we are un-
able to generically define a proper volume for them. To
rectify this, we generate a set of individually embedded
cliques by restriction, compute the volumes in this iso-
lated space where there is guaranteed to be such a proper
notion, and map the combinatorial information back to
the full state through coherent indexing. This is a formal
trick we use in order to ‘precompute’ what the simplicial
volumes would be if the elements were all geometrically
realized. In practice, this step need not be numerically
implemented in the algorithm, as our formulae for sim-
plicial volumes are naturally insensitive to this concern
and only depend on the embedded vertex points.

Let Rαd
be a restriction map such that

Rαd
(g(V,E)) = g(αd, E|αd

) . (9)

Each individually embedded clique is simply

χm(Rαd
(g)) ≡ α̃d = (

d+1︷ ︸︸ ︷
pi · · · pj)

pi = χm(vi) ∈ Rm , (10)

using the same indexing on αd to carry the labeling data
between the maps.

Now we can let ωαd
≡ Ω(α̃d).

Define the following structure as a skeletal subset:

K ′d ≡ tααd | {ωαd
> 0}. (11)

This produces d-skeletons which have elements that,
when considered in isolation, have proper d-volume.
That is, the embedded subgraphs do not span a lower-
dimensional hyperplane due to rank deficiency, or on the
contrary, contain too many vertices to be linearly inde-
pendent given the ambient dimensionality m.

Now define a new map I based on intersection pruning
such that any intersecting embedded cliques are removed
from the skeleton. Rigorously, we define the map as fol-
lows for d > 0 and d′ < d:

I : K ′d 7→ K∗d (12)

K∗d ≡ tααd | {∂αd ∈ K∗d′ , α̃d ∩ β̃d = (γ̃d′ ∨∅)

∀(βd 6= αd) ∈ K ′d ; γd′ ∈ K ′d′} ,

This map builds a quasi-convex simplicial complex out
of the elements with volume, which is the most general
simplicial complex that can be used with the definition
of curvature that we require. In practice, I is a binary
intersection test distributed over all cliques in a given
skeleton with nonzero simplicial volume and uses fast and
robust convex intersection algorithms. See Sec. V C for
details.

Given our suggestive notation, it should be apparent
that each K∗d , which we term a ‘proper pruned skele-
ton’, along with the associated weights ωαd

∀αd ∈ K∗d ,
make up precisely the combinatorial data for the state φm
which satisfies our set of constraints and embeddability
requirements by construction, and can be used to form
the structure we parameterized in Sec. III A.

We take the above sequence of maps to define the pro-
jection

µ : g̃m 7→ φm . (13)

D. Embedding the Combinatorial Data

Just as µ(g̃m) 7→ φm, we can implicitly define a repre-
sentative minimal embedding back from the combinato-
rial data into Rm.

Out of the infinite family of embeddings which satisfies
this property, let ηm be one representative fixed embed-
ding in Rm such that

φm = µ ◦ ηm ◦ φm . (14)

We note that due to the non-injectivity of µ,

ηm(φm) 6= g̃m (15)

in general, which is to say that µ is a left-inverse of ηm but
µ itself does not have a uniquely defined inverse. Even
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after removing the vertex/root labels on both sides of the
map, there are multiple states with different embedded
intersection properties that can yield the same combi-
natorial data defining φm. However, for every pairing
(g, χm) there exists a unique combinatorial state up to
inherited gauge equivalence through µ.

For a discussion of some of the gauge symmetries of
this theory, see Sec. A. An example of the equivalence
classes under gauge that we are referring to would be
those graphs equivalent up to isometry in the ambient
embedding space, ISO(m), or up to vertex automor-
phism in their graph parameterization, Aut(g).

E. Physical Covering Space

We have constructed a map µ such that a combinato-
rial state φm can be parameterized by entirely by (g, χm).

A state g̃m lives in the unrestricted space of all pos-
sible embeddings of all possible graphs (of the type
of graph/embedding pairing we consider). Denote this

space G̃′m. This space is dense in combinatorial states φm
by construction under µ as a multi-cover into a combina-
torial space we denote Ψ′m. However, we are interested
in the unique gauge-fixed equivalence classes of combina-
torial states, the physical space Ψm.

Define the following quotient map as a projection onto
the combinatorial gauge-fixed base space, identifying the
multi-cover into unique equivalence classes:

Q : Ψ′m/∼ → Ψm . (16)

We can formally define a pull-back of Q to the embed-
ded space by using ηm such that the following diagram
commutes:

G̃′m
µ−−−−→ Ψ′m

∃
yQ̃ yQ
G̃m

µ
−−−−→←−−−−
ηm

Ψm

We note that no such gauge fixing is known to exist
at the time of writing. As is often the case, we trade
difficult to characterize rigid constraints in the combi-
natorial description for difficult to characterize inherited
symmetries in the embedded description. Nevertheless,
it is numerically easier to handle sampling redundancy
than it is to sample the constrained space directly, and
although computationally inefficient, we can tackle this
issue with a well defined prescription.

F. Formal Path Integrals

In Sec. X we explicitly define the action S(φm) on the
combinatorial space Ψm. Our action is decomposable

into the combinatorial levels, and as a result, we can
formally define a Euclidean path integral for our partition
function as follows:

Zm =

∫
Dφm exp

m∑
d=0

−S(K∗d , ωαd
) (17)

Regarding numerical work, sampling the full space di-
rectly is difficult due to the constraints. Nevertheless,
with the projection µ, we can now sample a proxy-space
instead and be guaranteed to be sampling the entirely of
our space of interest with the same action:

Z̃m =

∫
D g̃m exp (−S(µ(g, χm))) (18)

We are not guaranteed, however, that a uniform sam-
pling of G̃′m will have its distribution preserved under
the map. Without further study, we cannot say that
in the limit of a sufficiently well mixed Markov chain,
the measure we intend to sample through a Metropo-
lis filter on the embedding space is truly the stationary
distribution we receive after we map to the combinato-
rial space, prohibiting a full quantum simulation of the
combinatorial space of interest. An outstanding compu-
tation which would enable such a full sampling would be
to demonstrate the convergence of the measures under µ
such that

P [dTV (Dφm, µ(D g̃m)) > ε] < 1− δ , (19)

for small parameters (ε, δ), uniform measures on the base
spaces, and total variation distance between the measures
dTV . Such a proof is the object of current work.

Seeking the action minima, however, is entirely within
our capabilities as they are trivially the same on both
sides of the map, and a strongly driven optimization
problem on the embedded side yields a combinatorial dis-
tribution highly peaked around classical states of inter-
est. The majority of the following discussion will work
in such a paradigm.

G. Boundaries

There exist special subsets of the states which are im-
mutable in the state sum. These are deemed to be the
state boundary, ∂g̃m, wherein the embedded graph subset
is unable to be altered in either its structure or embed-
ding data, relative to the other vertices in the boundary.
The combinatorial equivalent is given in terms of a min-
imal fixed K∗ structure that cannot be altered (and in-
duces a set of constraints on the weights at the nodes of
that structure), plus an additional set of finite constraints
on the weights associated with K∗1 . See App. B.

In the embedded picture, a state boundary is char-
acterized by its number of convex-hull disjoint path-
components. That is, we can have a single closed bound-
ary made of one path component, a 2-boundary system



6

where the state sum is over bulk geometries between ini-
tial and final configurations, or a multi-boundary state
given by n convex-hull disjoint components embedded in
the same ambient space. Each component is assumed to
have the same geometric realization structure encoded in
the combinatorial equivalent, such that given a boundary
component B(g, χm) ∈ ∂g̃m,

B(g, χm)) ∼ ηm ◦ µ(B(g, χm))) , (20)

where ∼ denotes equality under gauge. The initial em-
bedding of the boundary data establishes the relative ori-
entation of the substructures in the boundaries and any
intrinsic length scales of the system, which are also repre-
sented in the set of combinatorial constraints. An exam-
ple of a 2 path component boundary system initialization
can be seen in Fig. 4.

FIG. 4: Example of an Initialized Boundary State

In addition to the protected nature of these bound-
aries under the Markov process, the intersection map I
in Eq. 12 is also boundary preferential and is modified as
follows:

(12´)
K∗d ≡ tααd


αd ∈ ∂g̃m
∂αd ∈ K∗d′ , α̃d ∩ β̃d = (γ̃d′ ∨∅)∀ {αd 6∈ ∂g̃m

(βd 6= αd) ∈ K ′d ; γd′ ∈ K ′d′} .

In this way, our skeletal pruning is never destructive with
respect to the boundaries.

IV. AMBIENT SPACE

In order to probe emergent geometry, our discrete
model must make contact with discretizations of man-
ifolds. Although our model can be formally generalized
to work with cellular decompositions of manifolds, we
gain a robust computational toolkit with a restriction

to convex/simplicial structures. With the simplicial ap-
proximation theorem in mind, we choose to work in a flat
space and impose the geodesic embeddings of our graph
edges in order to restrict to abstract simplicial complexes
instead of abstract cellular complexes, without loss of
generality for manifold approximation [10].

We avoid pathological flat ambient spaces, for if they
cannot admit topologically ‘reasonable’ immersions of
manifolds, then we have no hope to grow approxima-
tions to those structures. Lastly, we would like the abil-
ity to unambiguously define unique edge lengths without
the use of an additional choice for periodically identi-
fied spaces, and we would like the full space available
for an embedding as to avoid spaces with any singular-
ities which could localize the graphs, establish extrinsic
length scales, or otherwise impact the state geometry. As
a result, we work in Rm.

In the emergent network picture, we aim to explore the
impact that the global embedding space has on stochasti-
cally grown networks between provided boundary states.
From the combinatorial side, this is a restriction on the
maximum number of levels m available in the combina-
torial tree. Although we work at fixed embedding dimen-
sion, nothing in our construction is explicitly dependent
on the ambient dimension–it is simply a constraint that
can be taken to be infinite, or much larger than any in-
trinsic dimensionality of the boundary states. This con-
trol is important in the context of quantum gravity, as
we would hope to allow for bulk states which may ex-
plore arbitrary dimensional configurations in the state
sum. From a holography perspective, we can then ask
questions like:

Given a boundary state which is a triangu-
lation of S2 embedded in R3, is the optimal
bulk state a triangulation of B3 in the inte-
rior? If we embed in 4 or higher dimensions,
does the high dimensional bulk data still lie
in the vicinity of a much lower dimensional
sub-triangulation?

The later opens up questions that breach the realm of
probing the manifold learning hypothesis [11]. For com-
putational purposes and to explore the effects of a finite
embedding space on network growth with fixed boundary,
we begin each investigation with the minimal embedding
dimension that accommodates the boundary data in ac-
cordance with Eq. 20 and explore for asymptotic behavior
in the large ambient limit.

V. MARKOV PROCESS AND METROPOLIS
ALGORITHM

A. General Approach

Within the paradigm of optimization of the embed-
ded networks, we now describe the finite horizon Markov
process by which the network undergoes an evolutionary
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step. Although one could use a variety of optimization
schemes, the nature of the space we sample lends itself
nicely to an annealed Metropolis algorithm.

Broadly, the algorithm takes as an input the anneal-
ing parameters, embedded boundary states, and the free
constants which are used to define the action. We then
establish a random walk on the space of embedded graphs
of the kind described in Sec. III B. After each step, we
perform the projection described in Sec.III C, evaluate
the action to be used in the Metropolis filter, enact the
annealed Metropolis accept/reject update, and after a fi-
nite horizon simulation, save the proposed classical state
to disk. Due to the inherited symmetries of the pro-
jection, we must then post-process our data to ensure
our states are unique representatives of the combinatorial
equivalence classes we aim to build our partition function
with, which amounts to a numerical implementation of
the map in Eq. 16. Finally, we can re-weight the data by
the measure and compute relevant statistics. If one could
guarantee a perfect optimizer, then this step would not
be necessary as the only states saved to disk would be
action-degenerate global minima, which we can use with
a uniform measure for our observables. However, no opti-
mizer is perfect, and re-weighting is necessary to further
distance any sub-optimal minima. If the annealing is
sufficiently slow, our saved samples should be localized
to minimal neighborhoods in the action space, and the
re-weighting will give some indication of the fluctuations
about those minima, as opposed to a strict cutoff.

Due to the fact that we are performing an optimiza-
tion as opposed to a full sampling, this algorithm lends
itself nicely to massive parallelization with a multi-start
heuristic. We furthermore do not have to worry about
burn-in or autocorrelations at this stage. However, these
concerns would most certainly need to be addressed when
performing the full sampling through a non-annealed al-
gorithm.

B. Random Walk

Let Mt be a set of available moves mi ∈ Mt indexed
by i at step t in the evolution. The set of available moves
have been chosen such that every move has an inverse
which admits detailed balance, and is heuristically chosen
such that the algorithm can freely sample across a large
space of admissible states. We establish a minimal set of
perturbations of g and χm which cover G̃′m:

1. Nodal addition and subtraction

2. Edge addition and subtraction

3. Nodal perturbation in the ambient space

Under a finite number of the above moves, any bulk
state g̃m can be accessed from any other bulk state g̃′m,
as can be easily seen through a deconstruct-reconstruct
proof. Of course, the moves are restricted to respect
the static boundaries and simplicity conditions imposed

by our graph definition, as well as vertex injectivity. In
practice, vertex injectivity is handled naturally by the
machine precision of the embedding data, and simplicity
is enforced by avoiding diagonal entries in the adjacency
matrix of the graph parameterization. We also include
more global moves to promote ergodicity and rapid mix-
ing which alter both g and χm simultaneously, such as
nodal splitting/recombining, edge splitting/recombining,
and multiple simultaneous node additions/subtractions
and edge additions/subtractions. See Fig. 5 for an exam-
ple of such a nodal splitting/recombining move.

FIG. 5: An Example Markov Move and its Inverse

In this way, our random walk is a kind of randomized
Gibbs sampling, a subset of the Metropolis algorithms,
due to any fixed subsets of the combinatorial represen-
tation under each iteration. Numerically, we handle the
formally infinite ambient space and graph complexity us-
ing a bounding method: we restrict to an open ball of
the ambient space which contains the boundaries and a
maximal number of allowed bulk nodes, and perform sim-
ulations with progressively larger ambient volumes and
allowed bulk nodes.

We take the Markov process to be a sequence
(g1, χ

1
m) . . . (gn, χ

n
m) of states where the maps from

(gi−1, χ
i−1
m ) 7→ (gi, χ

i
m) are the identity in the subspace

untouched by the perturbation. Although we could select
embeddings other than the identity which still preserve
the full combinatorial data in the complementary sub-
space, we choose the identity for convenience. Picking
such a particular embedding chain fixes some of the am-
bient gauge freedom.

Let pit be the probability for performing move mi:

pit =
1

|Mt|
∀ i , (21)

such that all moves which respect the state space have
equal probability, and those moves which take the chain
outside of the state space have zero probability.

C. Projection

The projection µ is accomplished by completing the
various skeletal decompositions, volume computations,
and intersection detections as outlined in Sec. III C.
To form the clique complex, for example, every com-
plete subgraph must be enumerated and stored. This
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amounts to an implementation of the clique problem,
which is an NP-complete algorithm. Volume computa-
tions are then performed using Eq. 25a, and the set of
cliques which do not satisfy the volume constraints are
removed. The intersection detection on the remaining
cliques are performed pairwise within the skeletons and
use familiar algorithms from convex geometry such as
solving a linear-programming problem on the convex hull
of the Minkowki difference of the embedded simplexes
being tested, or other specialized algorithms familiar to
the computer graphics community for lower dimensional
polytope intersection testing [12][13]. Once we have the
embedded descriptions of the proper pruned skeletons,
we have all of the data necessary to compute the action.

D. Annealing and Acceptance

An annealing temperature Tt ∈ R+ and an annealing
constant β = (0, 1] are established at the start of an algo-
rithm of annealed descent. As the simulation termination
condition is a finite horizon corresponding to the comple-
tion of a finite number of steps, we set the annealing to
be sensitive to the simulation horizon, tmax ∈ N.
β controls how much of the simulation is in a de-

terministic decent regime with zero simulation temper-
ature. We desire that large initial fluctuations allow
for perturbations into a boundary-biased configuration,
wherein thereafter the simulation begins to settle on a
local branch minimum before it strictly descends to the
optimal configuration of that branch. In this way we
achieve the freeze-out sampling of minima of the state
space to be used to build our desired ensemble as de-
scribed above.

As is often the case with annealing algorithms, the pre-
cise annealing schedule and ideal annealing parameters
are heuristically chosen as those which balance provid-
ing the deepest robust minima with fastest optimization
times.

Each move is either accepted if the action is lowered
and induces an update of the simulation variables, or con-
ditionally accepted if the action increases, with rejections
forcing a reversion of the state. This is accomplished with
a conditional probability πt+1

πt
of the form

πt+1

πt
= exp

−(St+1 − St)
Tt

. (22)

where the action St is computed according to Eq. 28.

VI. COMBINATORIAL GRAVITY

Our goal is to understand the roll of gravity in emer-
gent geometry from a combinatorial perspective. How-
ever, our traditional notions of gravity are not well
defined for a combinatorial framework. The Einstein-

Hilbert action on a manifold M is defined as follows:

SEH =

∫
M

√
−g(R− Λ) , (23)

where the Jacobian is built from the metric determinant
g, R is the Riemannian Ricci scalar, and Λ ∈ R is the
cosmological constant. The volume-weighted curvature
form of this action can be effectively discretized for tri-
angulations of a d-dimensional manifold, giving us the
action of Regge calculus:

SR =
∑
h

Vhεh + Λ
∑
σ

Vσ , (24)

where d-simplexes are indexed by σ, (d − 2)-simplexes
(hinges where curvature is concentrated) are indexed by
h, simplicial volumes V replace the continuum Jacobian,
and deficit angles ε replace the Ricci curvature [14].

We would like to understand what are the minimal pre-
scriptions necessary to generate geometric structures. To
make contact with the nearest discrete gravitational for-
malism of Regge Calculus, we utilize combinatorial no-
tions of volumes and curvatures which we can package
in an effective combinatorial action. We do not have
the rigid structures of even guaranteed simplicial com-
plexes at our disposal, and as a result, we sought to
carefully construct a ‘network gravity’ formalism which
admits analogous structures in the appropriate limit,
while maintaining agnosticism with respect to fundamen-
tal building blocks and attachment rules.

VII. PROPER PRUNED SKELETONS

In Sec. III C we outlined explicitly the map from the
embedded space to the combinatorial space, including
the pruning and excision process which defined for us
the K∗ structure. From the embedded perspective alone,
the states generically admit a large amount of geomet-
ric defects. This is a desired feature, for if the model
aims to probe emergent discrete geometry at all scales,
there should neither be constraints on the dimension of
the building blocks nor their matings. Macroscopic con-
sistency would only demand that in a regime where we
expect general relativity to be applicable, the emergent
description should be one which may approach a realized
triangulation of an underlying manifold.

As we do not have a dimensional specification, we must
allow for a description of a state that measures its near-
triangulation structure at each simplicial level. Breaking
down a generic embedded graph state into the K∗d skele-
tons is precisely such a structure. Each skeleton alone is
an embedded simplicial complex with geometric realiza-
tion of all of its simplicial elements that can be used as a
measure against a full triangulation, with the defects in
the global state carried by the decomposition structure.
The state is globally a superposition of abstract simpli-
cial skeletons that each admit volumetric embeddings,
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where the non-geometric data at each skeletal level only
comes from lower-dimensional structures. For example
as shown in Fig. 6, we may admit an embedding of a
2-simplex that has a 1-simplex in its interior, giving a
1-dimensional defect on the embedded 2-skeleton, but by
construction there can be no non-geometric data of di-
mension 2 or higher paired with our 2-simplex.

FIG. 6: Admissible 1D Geometric Defect on a 2-Simplex
Embedded in R2

Generic realizations which take abstract simplicial
complexes to simplicial complexes do not have the em-
beddability and volume constraints that we impose [10].
We do not have the freedom to generically untangle the
combinatorial network to force a geometric embedding
of every element, or to find an embedding space of high
enough dimension to admit a full realization, and instead
turn to our in-place decomposition which admits a con-
sistent graph structure for which we show that we can as-
cribe proper volumes and curvatures–essential tools for
probing an effective gravitational action. For a simpli-
cial structure, the K∗ decomposition is the most general
structure one could utilize which still meets the criterion
necessary for the curvature and volume forms we employ.

VIII. WEIGHTINGS

As mentioned, the weightings ωαd
assigned to a state’s

complete subgraphs are based on the embedded simpli-
cial volumes of those subgraphs. Our K∗ structure guar-
antees that we can properly define a d-volume for each
(d+ 1)-clique in bijection with a d-simplex.

A. Proper d-Skeleton Weights

K∗1 corresponds to the α-indexed list of 1-simplex edges
in the embedded graph state. Each edge α1 is then as-
signed a weight ωα1 given by its L2 coordinate length
along the graph from the inherited metric of the ambient
space.

This construction continues for all dimensional sim-
plexes, with K∗2 associated with the disjoint union of 2-
simplexes and weights ωα2

given by their corresponding
triangle areas, etc.

In general, the simplicial d-volume is given by the
Cayley-Menger determinant, with the L2 norm used to
compute the edge lengths between the embedded nodes
for each edge in the simplex [15]. We produce Bαd

, a

symmetric off-diagonal matrix of squared edge lengths,
by indexing over all embedded vertices pi ∈ α̃d.

For d > 0:

Ω(α̃d) =

√
(−1)d+1

2dd!2
det(B̂α̃d

) ; (25a)

B̂α̃d
=


0 1 · · · 1
1
... Bα̃d

1

 , Bα̃d
= ‖pi − pj‖22 . (25b)

Note that for d > m or subgraphs spanning hyper-
planes of dimension less than d, all ωαd

will necessarily
be zero as the coordinates cannot span the necessary vec-
tor space. We note that although the weights are derived
from simplicial volumes, they are defined to be unitless.
We simply take the magnitude of the simplicial volume
as the combinatorial weight which respects the image of
the volume map into R+.

B. 0-Skeleton Weights

As the vertex set does not have any simplicial volume,
we assign a single uniform weighting ωα0 ≡ ω0 ∈ R+

to each node, as they are geometrically equivalent point
objects. This marks the first free parameter of the theory,
and its consequences will be discussed at length.

IX. CURVATURES

As we do not have a triangulation structure, we have
no way of pre-associating curvature to specific substruc-
tures, such as those found in the Regge case when em-
ploying deficit angles [16]. In this network formalism, we
proceed with the intent that d itself is a true emergent
observable and utilize a combinatorial curvature which
generalizes to give a measure of discrete curvature over
all simplicial scales. See App. C for a description of Knill
Curvature, a purely combinatorial curvature measure of-
ten used in network theory that we justify is too topolog-
ical for our purposes as it fails to take into consideration
the Euclidean volumes of the emergent realized geometry.

A combinatorial curvature associated with any cell of
a quasi-convex cellular complex can be described by the
dimensionless Forman scalar curvature derived from the
Bochner-Weitzenbock decomposition of the combinato-
rial Laplace operator [17]. A regular CW complex is
quasi-convex if for every pair of d-cells (α, α′) and (d−1)-
cell γ,

γ ⊂ (ᾱ ∩ ᾱ′)⇒ (ᾱ ∩ ᾱ′) = γ̄ . (26)

We note that a simplicial complex is a subset of this
larger class, and that this scalar curvature can be applied
to give a curvature measure on each αd ∈ K∗d , as K∗

satisfies quasi-convexity by construction with the map I
in Eq. 12.



10

This definition of curvature is a weighted combinato-
rial curvature which depends on the near-nonlocal data
of the αd±1 neighbors (αd ⊂ αd+1 or αd−1 ⊂ αd) of
the original simplex, and all of the associated weights.
Formally, the list of weights is an arbitrary assignment
into R+ inherited from an inner product on the cellular
chain complex and can be provided by topological data,
selected from some distribution, or set as a standard set
of weights by taking them all to be unity. Here, we as-
sert by model ansatz that the weights be precisely the
embedded weights provided by the Ω map in Eq. 25a,
which allows this measure of curvature to account for
the relative sizes of the simplicial pieces, along with their
connection data. Such an assignment was suggested by

Forman as an approach to possibly connect the study of
curvature on embedded combinatorial manifolds as cel-
lular decompositions to their Riemannian analogues, im-
buing the combinatorial structure with a sense of the
intrinsic geometry of the cellular pieces [17].

For d = 1, the Forman curvature is strongly analo-
gous in homological properties to the Riemannian Ricci
curvature when the edges are considered as part of a cel-
lular decomposition of a manifold, making them a good
analog for gravitational curvature in this formalism. The
higher curvature terms correspond to a generalization of
the scalar curvature for the higher dimensional cells.

The Forman curvature is given as follows:

F (αd) = ωαd

 ∑
αd+1⊃αd

ωαd

ωαd+1

+
∑

αd−1⊂αd

ωαd−1

ωαd

−
∑
α̃d 6=αd

∣∣∣∣∣∣∣∣
∑

αd+1⊃αd

αd+1⊃α̃d

√
ωαd

ωα̃d

ωαd+1

−
∑

αd−1⊂αd

αd−1⊂α̃d

ωαd−1√
ωαd

ωα̃d

∣∣∣∣∣∣∣∣
 . (27)

We note that for a uniform point weight, F (α0) = 0. We
also note that unlike the Riemannian case where there is
no intrinsic curvature, nonzero Forman curvature can be
ascribed to edges of a 1-dimensional triangulation. This
is a known obstruction to having this curvature measure
be more closely aligned with a smooth equivalent [17].
In our case, we can recover the right intrinsic curvature
behavior in 1-D when the point volume is zero, however.
This has led us to hypothesize that once the adjacency
structure is set at a regulated value of ω0, there may be a
renormalization of the point volume back to the physical
value that can be accomplished by an secondary anneal-
ing, holding K∗ fixed. Investigations are forthcoming on
this front.

X. ACTION

The action is an effective model based on the K∗d slic-
ing of the network. For each slicing, a Regge-like action
is implemented, with the volume form given by the com-
binatorial map of the embedded simplicial weights, and
the curvature form given by the Forman curvature. The
action includes a sum over all possible proper pruned
d-skeletons, and for a finite network, itself necessarily
contains a finite number of terms.

S(φm) =

m∑
d=0

ξd
∑

αd⊂K∗d

ωαd
(F (αd) + Λ) . (28)

Here, the ξd are coupling constants which differentially
weight the slices of the network. These can be repack-
aged as a tower of coupling constants for each higher
curvature term, similar to those found in a Lovelock the-
ory of gravity where a sum over all Euler densities in

d-dimensions constitutes the most general gravitational
action [18]. There is no explicit constraint at this time
which guides our couplings.

Uniform weighting over all d-skeletons occurs with
ξd = 1 ∀ d. This is the only the distribution we have
found experimentally thus far which demonstrates the
phenomenology we are interested in, and moreover, we
suggest it is a natural from a dimensionally agnostic per-
spective to avoid dimensional bias.

The cosmological constant term Λ is a dimensionless
scalar offset to the Forman curvature representing a uni-
form background combinatorial curvature present over
all skeletons. We will show at length the effect this term
has on classical states.

XI. REGULATION

The action is intrinsically not positive-definite. As
such, in the descent paradigm, the global minimum may
be unbounded with network growth. Two of the free
parameters we have introduced so far, the point volume
and the cosmological term, act as regulators against such
configurations.

A. Point Volume and Minimum Combinatorial
Weight

As a simplicial volume, a natural choice from a geo-
metric perspective may be to take ω0 = 0. However,
the Forman curvature dictates that the weights must be
strictly positive. If we were to force the situation of a
zero point volume, we additionally find that there is an



11

equivalence class of the action under the addition of dis-
connected points, where ∆S = 0. This implies an identi-
fication between the absolute empty state and a state of
infinite point density under the action.

While one solution to break this degeneracy would
be to simply remove any disconnected points as ‘non-
participating’ elements of the state, the geometric signif-
icance of a state which is infinitely dense with discon-
nected points is lost. Underneath the cover of points, a
non-trivial network may have non-zero action due to the
K∗d slicing of the network. But in practice, there is no
way to discern whether two points are connected in the
infinitely dense sea, indicating that such an equivalence
class is disfavored geometrically.

1. Pruning Modification

The presence of a positive definite point volume sets a
minimum combinatorial length scale to the system. We
assert that a combinatorial volume with ωαd

≤ ω0 should
not be able to be resolved, and require that our pruning
procedure for determining geometric realization respect
the point-volume as a lower combinatorial-volume bound.
We modify Eq. 11 as follows:

K ′d ≡ tααd | {ωαd
> ω0}. (11´)

Analytical justification for this regulation is discussed in
Sec. XI C 1.

B. Cosmological Constant and Positive
Definiteness

The cosmological constant term also gives rise to di-
vergences with Λ ≤ 0. Once we establish that ω0 > 0,
it becomes immediate that Λ < 0 would also lead to a
network evolution into a state which is infinitely dense in
disconnected points and an action which is unbounded
by below. Any trivial point addition would be admitted,
with ∆S = −|ω0Λ|. For Λ = 0, disconnected point addi-
tion would cause again ∆S = 0, as both curvature terms
would be zero for the point volume contribution. We
again argue as above that this is disallowed, and find that
we are naturally restricted to Λ > 0 as a combinatorial
regime which supports compact network growth. Alter-
natively, we can view the cosmological and point volume
terms as regulators, wherein only positive-definite values
can admit actions which may be bounded from below and
split the point-degenerate equivalence classes of action.

C. Finite Probe Test for UV and IR Divergences

As a simple toy model to probe for bounded changes
in the action under perturbations, we consider the addi-
tion of a single 1-simplex of weight ω11 with geometric

attachment to an existing 1-simplex of weight ω21 . The
fluctuation here is given by

∆S = Λ(ω0 + ω11) + 2ω0ω11 −
ω0(ω2

21 + ω2
11)

√
ω21ω11

. (29)

In general, this expression has no definite sign.

1. UV

We can see that without the point volume regulator
in the volumetric cutoff, a divergence to −∞ would be
present for an attachment of infinitesimal length, regard-
less of model parameters. With the cutoff, we forbid
such a small length scale ‘ultraviolet’ divergence and the
change in action instead approaches the following:

lim
ω11
→ω0

∆S = 2ω0(Λ + ω0 −
(ω2

21 + ω2
0)

2
√
ω21ω0

) . (30)

In the mutual limit that both ω(1,2)1 → ω0, we see that
we recover the action equivalent of the addition of two
isolated points, which matches our geometric intuition
as both the extent of the 1-simplex and the connectivity
are combinatorially unresolvable from a point according
to the weights.

All cases of vanishing simplex addition then yield finite
changes in the action, with the sign dependent on the
model parameters and simplex lengths.

2. IR

The limit

lim
ω11
→∞

∆S → −∞ (31)

signals a large structure divergence in the ‘infrared’
regime of the theory. Regardless of model parameters,
a large enough simplicial probe attached to a 1-simplex
will always yield a negative change in the action, and un-
bounds the global minimum of the theory. Understand-
ing the nature of this divergence is the issue of current
work in the model, as any system can allow a tempo-
rary fluctuation to generate the existence of an isolated
1-simplex, and by sending an infinite 1-simplicial probe,
will immediately drop the system to a global minimum
of maximally extended polymer-like geometries regard-
less of the initial state configurations.

3. Bubble Divergences

This IR divergence is extremely similar in nature to
naive bubble and spike divergences found in spinfoam
theories of quantum gravity. As a largely simplified ex-
planation, a trivially satisfied constraint equation on the
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allowed irreducible representation labels in a closed sub-
graph of the foam admits an unbounded sum over all pos-
sible labelings of edges by half-integer representations [3].
This causes an explicit divergence of terms in the parti-
tion function. In such a case, a quantum-deformation of
the gauge group can act to regulate the theory by re-
stricting the number of good irreducible representations
in the sum to a finite set and giving such a symmetry
finite volume [19]. This deformation parameter is intrin-
sically tied to the existence of a positive definite cosmo-
logical constant.

FIG. 7: Cartoon Representation of a Spinfoam Spike Di-
vergence [1]

4. Branching Universes

Even with a naive IR divergence uncontrolled, such a
behavior does not entirely invalidate the formalism. As
the network evolution is accomplished by a series of fi-
nite Markov moves, we can simply restrict to a set of local
moves which, on average, prevent such a divergence from
materializing in practice. We examine instead for min-
ima which, divergent moves unconsidered, act as meta-
stable optimization points in topology, which can then
be perturbed in volume to understand the local stability
of the configuration. This is similar to the CDT handling
of branching universes which would otherwise cause di-
vergences in the state sum [20]. The tendency for an
infinite simiplicial probe may be interpreted as the emer-
gence of a branching universe, where localized boundaries
give rise to the birth of new geometry grown extremely
non-locally. Seeing the same sort of divergence here may
indicate that emergent geometry at the simplicial scale
alone has such a property before we ever even consider a
large geometry limit.

The causes of such divergences in a CDT have roots in
Regge calculus, where residual diffeomorphism symme-
try in the bulk manifests as unconstrained translations
of triangulation vertices [21]. Here, without contact to
diffeomorphisms through even discretized manifolds, we
still see such a divergence. Understanding our divergence
as a possible manifestation of a kind of ‘combinatorial
diffeomorphism’ is underway.

Nevertheless, unlike the typical characteristic of tra-
ditional Euclidean emergent geometry where the ten-
sion between the entropy of the state configuration plays
against the unboundedness of the action to see a sharp
phase change between either a crumpled or maximally ex-

tended state, we show that there exists tunable param-
eter regions where stable compact extended geometries
can be still achieved as classical saddles [6].

FIG. 8: Cartoon Representation of Branching Universes
in a CDT [22]

5. Λ and Diffeomorphism Symmetry

As mentioned, many of the naive infrared divergences
in discrete emergent geometry models can be seen not
as sicknesses, but as manifestations of residual diffeo-
morphisms on the vertices of a fixed triangulation. This
gauge volume can be rendered finite by the existence of
a positive cosmological term.

In a CDT, having a positive cosmological term corre-
sponds to a maximum length scale through volume con-
straints. The topology is fixed to S3 × S1, and as each
slice of the triangulation is constrained to be a triangu-
lation of S3, the bare cosmological constant is, on-shell,
directly translated to the compact volume of the space
as they are conjugate in the discretized action [6]. There
are only two volumes of 4-simplexes used in a 4-D CDT,
and as an average 4-volume of a simplex can be defined
and related to the 4-volume of the universe being simu-
lated, the fixed topology gives a convenient bound on the
maximum number of 4-simplexes through the action. As
such, CDT’s are simulated at fixed space-time volume
and fixed topology, and the sampling is constrained to
sampling over triangulations with different reaches and
volume distributions (although an inverse Laplace trans-
form can be used to relate the partition function to the
variable volume case [7]). For a 3d spin foam formula-
tion where the representation labels on the spin network
edges correspond roughly to geometric edge lengths, the
q-deformation cutoff can be reinterpreted geometrically
proportionally to the finite maximum geodesic distance
on a corresponding sphere of the same constant positive
curvature [21]. Therefore, the gauge volume of residual
diffeomorphisms as translations of spin network vertices
giving an IR divergence is now finite. The symmetry is
still present, but it at least has finite gauge volume which
can be handled analytically.

In the network gravity formalism, we introduced a cos-
mological constant as a combinatorial offset strictly as a
regular on the number of disconnected components. We
witness a naive IR divergence in our model that is not
naturally regulated by mere existence of the cosmological
term. It is not universally true for Euclidean geometries
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that simply because one includes a positive cosmological
term, there exists a maximal length scale. Only on-shell
can we relate Λ and R directly through the Einstein equa-
tions, and the local nature of these equations prevents us
from making claims about any global structure like to-
tal volume. Moreover, for the combinatorial action, we
have yet to solve the equations of motion in closed form.
Although there may be a way to interpret and regulate
the divergence in the combinatorial model, without addi-
tional structure to understand the effect of a combinato-
rial cosmological term, such efforts may be independent
of Λ.

At present, our simulation heuristics demonstrate that
the intrinsic scales of the boundary set the locality reg-
ulator for our optimization. If the simulation is allowed
to probe scales much larger than the boundary scales,
any structure in the boundaries is dwarfed by the glob-
ally unconstrained behavior of a free combinatorial-bulk.
If the simulation is allowed to perturb within a compact
region of the ambient space localized to the boundary
scales, the simulation respects the boundary geometry
and finds bounded minima. Understanding the nature of
this relationship is at the heart of ongoing work.

XII. SIMULATION RESULTS

We restrict our discussion to the case when the cou-
pling constants ξi are all unity.

A. 1-D Simulations and Cosmological Constant
Driven Phase Transitions

FIG. 9: From top to bottom, we illustrate the 1-D bound-
ary setup; show an example geometric solution with sim-
plicial attachments; and give an example abstract solu-
tion with non-simplicial attachments (shown with curved
lines for illustrating overlap)

A 1-dimensional embedding space is the simplest ab-
stract network situation in which we can anticipate a clas-
sical state due to the restricted types of building blocks

and attachments. Consider two closed disjoint intervals
of the real line. Triangulate each interval with a single
1-simplex with 0-simplex boundaries. These networks
can represent a 2-boundary state that we would like to
investigate.

A classical bulk network which connects these disjoint
boundaries and represents a triangulation of an underly-
ing manifold would be a series of 1-simplexes that con-
nect the two segments in an embedded simplicial complex
with non-overlapping simplicial volumes. However, in the
space of embedded abstract simplicial complexes, we may
admit isolated point additions (both overlapping edges
or disjoint), and 1-simplex additions as disjoint, point-
connected, overlapping, or doubly-point connected. The
situation is illustrated in Fig. 9.

Example optimal states for uniform coupling and pos-
itive point volume are shown in Figs. 10, 11, and 12.
We see that for negative cosmological constant the sys-
tem begins to fill all available space with nodes. This
echoes our earlier analysis of evolution in the presence of
a non-positive cosmological constant. For a positive cos-
mological term with a value less than a particular critical
value Λc, the simulation demonstrates a geometric com-
plex solution we would anticipate as a minima of the
action, with fully realized skeletons. Lastly, when prob-
ing the system for Λ > Λc, we see that no realizable
network is favored to grow as the system began in its
global minimum. The system is perturbed into a highly
connected state, but as keeping or removing intersect-
ing geometries are equivalent under this parameter set,
we are left with an over-connected graph state on the
original set of nodes. The critical value Λc was found
through numerical investigation, and does not yet have
an analytical justification; nevertheless, Λ acts as a clear
parameter for controlling the phases between very differ-
ent states of stochastic network growth, focused on either
the network connectivity or abundance of structural ele-
ments. This indicates the importance of the cosmological
term as a regulator of non-degenerate state growth with
respect to fixed boundaries.
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(a) (b)

FIG. 10: Λ < 0 Optimal State (a) and K∗ Decomposition (b).
The network growth fills all available space with nodes and does not produce fully geometrically realized images,

with isolated nodes and overlaps in edges.

(a) (b)

FIG. 11: Λ > Λc Optimal State (a) and K∗ Decomposition (b).
We see that no geometric network emerges–the action began in its global minimum with the boundary

configuration, and lateral translations into degenerate configurations induce an over-connected graph state.

(a) (b)

FIG. 12: 0 < Λ < Λc Optimal State (a) and K∗ Decomposition (b).
We see the minimum in the action appears with the emergence of simplicial attachments that have proper geometric

embeddings admitting a perfect skeletal decomposition that lacks any unrealized or disconnected geometries.
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B. Higher Dimensional Simulations

(a)

(b)

(c)

FIG. 13: Geometry Restricted to R2 with Boundary
States of Two Finite 1-Simplexes.
We see the characteristic phases of negative (a) or super-
critical (b) cosmological growth, with either chaotic ele-
ments with disconnected regions or no network growth at
all, respectively; in c), we see realized growth for the geo-
metric cosmological range, forming a completely realized
2-triangulation of some finite strip.

(a)

(b)

FIG. 14: Identical 2-Simplex Boundaries and their Net-
work Growth for Negative (a) and Geometric Cosmolog-
ical Parameters (b)
We can clearly see that the disconnected and disordered
network of the negative cosmological simulation starkly
contrasts with the positive-subcritical simulation.

We provide examples of a higher dimensional embed-
ding simulations in Figs. 13 and 14, illustrating final net-
work growths for Λ in the identified phases.

Although the presented simulation results do not yet
provide detailed statistics, these examples do demon-
strate that the action and growth procedure are capa-
ble of investigating the emergence of realized geometries
without preassigning attachment rules or dimensional as-
sumptions. In the generic space of abstract simplicial
complexes, it is a highly nontrivial goal to find a phase
of stochastic growth with geometric realization and com-
pact yet voluminous extent. Although there is certainly
further work to be done, that the model can naturally
demonstrate precisely such a phase, and even gener-
ate genuine partial triangulations as classical minima, is
strongly encouraging as a base framework. Systematic
investigation into geometric phases is underway.
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XIII. ADDITIONAL MODEL PROPERTIES

A. Action-Flat Network Dynamics

We restrict ourselves now to the case of model interest,
where (ω0,Λ) > 0.

In this regime, we ask whether there are equivalence
classes under the action for various states. To begin
our analysis and simplify the investigation, we restrict to
first probe independent regular simplicial building blocks.
This provides us with a 3-dimensional configuration space
of variables: ω0, Λ, and ω denoting the uniform edge
length.

We can now easily generalize to the case of an arbitrary
regular n-simplex of side-length ω, and find the action in
closed form:

ωd =
ωd

d!

√
d+ 1

2d
(1 + δd0(ω0 − 1)) (32)

Sn =
n∑
d=0

(
n+ 1

d+ 1

)
ωd
{

Λ + (1− δd0)

× ωd
(

(n− d)
ωd
ωd+1

+ (d+ 1)
ωd−1
ωd

− ((n− d)

(
d+ 1

d

)
)Θ(n− d− 1)| ωd

ωd+1
− ωd−1

ωd
|
)}

Here, the δ·· is the Kronecker delta, and Θ(·) is the Heav-
iside function with the imposition that Θ(0) = 1.

We study the level-sets of this function, solving for
the roots of this action as an example. We see that for
progressively higher n simplexes, the solution space has
larger forbidden regions in the parameter space, and even
discontinuous regions, but nevertheless the space of solu-
tions does not appear to become discrete or vanish.

2-Simplex: The regular 1-simplex action has a single
isolated point as level sets and is uninteresting. We
look toward the 2-simplex action, which takes the
more complicated form:

S = 3ω0Λ +

√
3

4
ω2(3ω + Λ)

+ ω(4
√

3 + 6ω0 + 3Λ− 2ω|4
√

3− 3ω0

ω
|) . (33)

We can see in Fig. 15 that there does exist a so-
lution set for S = 0 and Λ > 0 (this plot extends
to both ±Λ in the interest in seeing the structure).
Thus, certain values of cosmological and point vol-
ume terms admit the spontaneous emergence of 2-
simplexes for even a purely classical action descent.
Furthermore, we see that ω appears cubically in
the above equation, allowing for the possibility of
a multivalued solution. This indicates that a spon-
taneous transition between regular 2-simplexes of
varying size is admitted by the action as well, for
particular regions of the free parameter space.

FIG. 15: S = 0 manifold as a function of (ω, ω0,Λ) for
an isolated 2-simplex, with the first indications of multi-
valued behavior in ω for fixed model parameters

n-Simplex: We have continued to probe higher regular
simplex structures for their flat manifolds with re-
spect to the configuration space, and can report a
similar behavior. We provide an example in Fig. 16
of a regular 20-simplex S = 0 manifold for ev-
idence of multivalued behavior for some parame-
ter regimes, as well as large regions where there is
clearly no such degenerate behavior.

FIG. 16: S = 0 manifold as a function of (ω, ω0,Λ) for
an isolated 20-simplex, clearly showing a rich parameter
space of multivalued solutions

The existence of these manifolds suggests equivalence
classes of networks under the action, where the network
dynamics may translate laterally along these flat direc-
tions before jumping into a new region of the state space.
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The states themselves are distinct elements in the state
space. However, for the purposes of numerical simula-
tion, the possibility for a network to deform along a flat
parameter manifold before jumping into a state with a
radically different action compared to the primary state
introduces a new level of complexity. The system can be
prone to large fluctuations in the action, and sampling
efficiently can be difficult with non-isolated degeneracies
and potential domain walls.

It should be noted that, for a given simulation, the pa-
rameters of ω0 and Λ are non-dynamical. We also clearly
do not expect only regular isolated simplexes to consti-
tute the states. Nevertheless, it is still unknown whether
the properties seen in this restricted numerical investiga-
tion will be present in the general state case, or whether
the flat manifold degeneracies are split into a sufficiently
discrete space.

The proof of existence and study of behavior of action-
degenerate general networks is underway.

B. Refinement

There is no sense in which we can explicitly take the
number of simplexes to be very large or edge lengths to
become small, given a fixed boundary. The algorithm
naturally selects the number and size of simplexes as it
iterates, and we have no control over the grown bulk once
it has been established. Especially since we are probing
structures that may not be related to triangulations in
the far non-classical limit, we cannot use any assump-
tions applied from traditional discretizations. Therefore,
we do not look to this model to necessarily generate a
macroscopically smooth structure at any scale, but to
understand the emergence of micro-geometry and its de-
fects. There is the potential to understanding a refin-
ing limit holographically as imposed from the boundaries
themselves, however.

One possibility that we intend to explore further is the
existence of flat-action refinement, exploiting the prop-
erty demonstrated in Sec. XIII A by translating laterally
in action-space through refined configurations. An ex-
ample of a transform which could generate such an orbit
through the configuration space would be a conformal
rescaling followed by barycentric subdivision (BSD). Un-
like a triangulation where Pachner moves can be used
to admit refinements or coarsening limits, due to our in-
tersection pruning, such moves would not grant us a re-
fining limit. For example, the 1 − 3 Pachner move on a
2-simplex would actually result in no 2-simplexes under µ
due to the outer triangle containing the inner triangles.
A barycentric subdivision, however, provides the right
nodal structure to be non-destructive under µ up to the
minimal length scale, provided the initial state is geomet-
ric, as geometric realization is preserved under BSD [10].
See Fig. 17 for an illustration of this procedure.

FIG. 17: Refinement Example Under 1−3 Pachner Move
(a) vs Barycentric Subdivision (b)

This refinement procedure, when performed from a
minimum of the action as simulated in finite volume,
would give a way of generating macroscopic spaces with
self similar structure, provided the minimum is global or
at least remains a minimum in the locally-enlarged space.
As a result, we can induce a kind of renormalization of
the combinatorial scale in the bulk (which is only set by
the point volume) through such a process.

C. Observables

Other than the statistics of the Forman curvatures and
weights over the skeletal structures, additional observ-
ables that can be considered are either purely topologi-
cal or reference global properties. For example, |K∗d | or
the number of path components π0 can be calculated.
An understanding of when a particular abstract complex
is ‘approaching’ a geometric complex can be gained from
these observables. One method to measure this limit is to
consider whether a particular complex can be reduced to
a fully realized complex (even of uniform building blocks
in the sense of a triangulation) in a finite number of ad-
ditional pruning moves.

Of particular interest is the emergent dimensionality of
the state, grown under various conditions (valence or em-
bedding dimension restrictions), between various bound-
aries. One measure of dimension we aim to employ is the
spectral dimension

ds = −2 lim
σ→∞

ln pψ(σ)

lnσ
, (34)

where pψ(σ) is the return probability of a discrete diffu-
sion of length σ.

Use of the spectral dimension as a diffeomorphism in-
variant measure related to physical dimension can be seen
throughout the CDT literature [7], since an unweighted
diffusion is a purely combinatorial walk.

Taking the space of optimal embedded graphs as an
ensemble itself, we can compute a different set of ob-
servables that can rely on local embedding data, such as
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the percentage of geometrically realized simplexes of a
given order. These observables and the space of optimal
graphs are interesting in their own right independent of
the combinatorial space, as they have a more dense space
of intersecting geometries to study and have an explic-
itly fully broken diffeomorphism symmetry, allowing us
to probe observables such as Hausdorff dimensions aver-
aged over ensemble embeddings.

XIV. DISCUSSION

The study of emergent complex networks is a largely
active field in which a variety of network growth
paradigms are investigated for behavior which can be
mapped onto physical problems of interest a posteriori.
Rules which govern network growth in a given model
are often selected without a motivating principle, as it
is difficult to gain a thorough understanding of the emer-
gent properties of the model without fully running the
stochastic growth.

We have presented an emergent network formalism
with strong analytic handles which can be used to inves-
tigate the nature of network interactions and probe emer-
gent geometry considerations as mapped onto a combi-
natorial state space of interest. In building a gravitation-
ally motivated model to study outstanding questions in
simplicial emergent geometry, we allowed for a stochas-
tic Markov process to generate a bulk network state be-
tween fixed boundary configurations, sampling for the
stable minima of the semi-classical state space through
an annealed Metropolis algorithm in order to probe our
combinatorial measure. The metric against which we
evaluated the network growth is an action principle in
the space of abstract simplicial complexes, utilizing a
decomposition of the embedded state into a superposi-
tion of proper skeletons consisting of geometrically re-
alizable simplexes with non-empty simplicial volumes.
Using the Forman cellular curvature with combinato-
rial weights provided by simplicial volumes, we showed
that a Regge-like network action demonstrates distinct
phases of stochastic geometric growth driven by the cos-
mological constant without preassigning the dimension
of the simplicial building blocks, attachment rules, or
dedicated embedding dimension. With fewer constraints
imposed by hand, we connected the qualitative behavior
of the model to existing frameworks for emergent geom-
etry and aspects of discrete quantum gravity, and illus-
trated numerical and analytic justifications for a positive-
definite cosmological constant and minimum combinato-
rial length scale.

Upcoming work aims to answer some of the many ques-
tions this construction poses, and begin to systematically
compute observables for a wide variety of configurations
in addition to demonstrating analytical proofs for the
tractable sectors of the combinatorial space.

We would lastly like to mention that in addition
to studying geometric embeddings from combinatorial

structures, this formalism may be able to be used to
model a variety of other types of network dynamics. For
example, a study of optimal social networks, neural net-
works, or networks related to commerce can be mapped
onto this formalism.

There is a rich landscape to study, and the framework
presents a numerical ‘petri-dish’ of emergent combinato-
rial geometry to probe.
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Appendix A: Gauge Symmetries

In terms of inherited symmetries under µ from the
embedded state, foremost the action is invariant under
ISO(m). Additionally there is the group of symmetries
which maintains the combinatorial weights and adjacency
data but deforms the underlying coordinate space. This
can be seen as a space of restricted diffeomorphism, where
one can freely deform points (actively or passively) as
long as edge lengths as measured from the induced metric
on the ambient space are invariant between all connected
nodes. An example would be the case of two 1-simplexes
attached at a common node. Without changing the ac-
tion, either end-node can be displaced by pivoting around
the central node on some Sm with a radius of the em-
bedded edge length (modulo degeneracy considerations).
The same can be said for any structure with a higher di-
mensional ‘pivot.’ The number of free pivots characterize
the continuous symmetry in the available ambient space
and creates a large class of equivalent states under the
action up to such coordinate displacements.

We also have symmetries of the graph state that are
shared by the combinatorial state space alone. Writ-
ing down the state in an adjacency matrix sets an ini-
tial labeling, but we have vertex automorphisms AUT (g)
which preserve the adjacency structure but permute the
labels and give the same combinatorial data. More im-
portantly, the combinatorial state is truly labeling in-
dependent. The number of weighted-cliques of a given
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order and how many neighbors they each have make up
the data alone. A complete relabeling of the graph state
can give the same data, and this symmetry is larger than
just the vertex automorphisms.

Appendix B: Combinatorial Inequalities

For a fixed K∗ structure, there are determinant in-
equalities on the weight structures from Eq. 25a to insure
that there exists some simplicial volume greater than ωα0

provided a range of edge lengths, and inequalities that
come from embeddability. The embeddability require-
ments are the most difficult to characterize. These dic-
tate, for example, that for any closed (m − 1)-surface A
in an ambient m-space, every permutation of sums of the
surface-weights with a single element α̂ removed must be
greater than the weight of the removed element:

(
∑

αm−1 6=α̂m−1∈K∗m−1|A

ωαm−1
) > ωα̂m−1

∀ α̂ . (B1)

These include the higher dimensional closure inequali-
ties on the weights for given simplexes by taking the sur-
face to be a single element (like the triangle inequalities),
but also extend to surfaces which live entirely in sub-
dimensional hyperplanes. There are further constraints
which are even harder to characterize: for example, given
a vertex in 2-D that is surrounded by simplically attached
2-simplexes except for a small deficit, one needs inequali-
ties on the allowed 2-simplex which would only share the
internal vertex and live in the remaining ambient ‘wedge,’
which is a highly non-local and non-trivial inequality.

Furthermore, the existence of combinatorial bound-
aries presents equality constraints on the allowed level-1
weights connecting boundary roots, which can be seen
more clearly in the embedded picture as constraints due
to the relative positioning of the fixed boundary struc-
tures.

A full understanding of when an abstract simplicial
complex can be embedded in a fixed dimensional Eu-

clidean ambient space with prescribed simplicial volumes
is tractable for 1 dimension and possibly for 2 dimen-
sions, but immediately becomes unwieldy for higher di-
mensional spaces.

Appendix C: Knill Curvature

An oft used curvature in network theory is the Knill
curvature, defined for simple undirected networks g at a
given node v by counting the number of complete sub-
graphs of order i attached to said node (here denoted
#i
v) [23, 24].

Rv =

∞∑
i=1

(−1)i+1

i
#i
v , (C1a)

χ(g) =
∑
v∈V

Rv . (C1b)

We see that when summed over the network, the Eu-
ler character is returned, which gives a discrete analog of
the Gauss-Bonnet theorem for networks. We avoid us-
ing the Knill curvature for two reasons. Foremost, this
curvature form is purely combinatorial and does not take
into account relative weighting between complete graphs
of different sizes. Although trivially diffeomorphism in-
variant, this curvature is at odds with the notion of cur-
vature we would like to associate with our model where
intrinsic geometric data is accounted for. Secondly, while
the Knill curvature as an Euler density appears simi-
lar to the Ricci curvature for 2 dimensions, this analogy
clearly breaks down in higher dimensional Riemannian
manifolds where the Ricci curvature is no longer a topo-
logical density. The Knill curvature is always measuring
topological properties, and we seek a measure of curva-
ture which is not strictly always an Euler density.
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