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Abstract

We provide dual algorithms for sampling the space of abstract simplicial

complexes on a fixed number of vertices. We develop a generative and

descriptive sampler designed with heuristics to help balance the combinatorial

multiplicities of the states and more widely sample across the space of

nonisomorphic complexes. We provide a formula for the exact probabilities

with which this algorithm will produce a requested labeled state, and compare

with an existing benchmark. We also design a highly conductive local

ergodic random walk with known transition probabilities. We characterize

the autocorrelation of the walk, and numerically test it against our sampler to

illustrate its efficacy.
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1. Introduction to the Space and Use of Abstract Simplicial Complexes

Whether used to model information theoretic phenomena like social networks or

to study the combinatorial properties of fundamental structures in understanding

emergent geometry, abstract simplicial complexes have a rich history of applications

and are increasingly used in physics as powerful tools with extensive mathemati-

cal structures [6]. Unlike 1-dimensional graphs that only convey connectivity data

between nodes, abstract simplicial complexes (ASCs) are generalizations that can

allow representations of data through higher-dimensional geometric structures, such as

surfaces and volumes in the form of combinatorial triangles and tetrahedra (and their
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higher dimensional equivalents). Informally, an ASC is the combinatorial abstraction

of a geometric simplicial complex encoding the downward closure property. Unlike

a geometric simplicial complex where the intersections of any two simplicies in the

complex must also be a simplex in the complex that is in the union of the boundaries

of the intersecting simplicies, ASCs only require that any boundary of a simplex is

also a simplex in the complex. For example, the clique complex of a graph—the set

of all complete subgraphs—is an abstract simplicial complex on the vertices. For a

graphical picture of the differences of an ASC with a geometric simplicial complex

when embedded into an ambient space, see Fig. 1.

(a) (b)

Figure 1: A Simplicial Complex (a) and a Clique Complex (b), both Embedded in R3

This structure allows one to model more complex association data that may not be

captured by the limited degrees of freedom in a traditional graph or directed graph.

Many models that involve these structures are generative, that is to say that one has

a well defined way of prescribing a constructive growth paradigm and studying the

complex emergent properties of the resulting states [8]. However, statistical physics

models on the space of simplicial complexes and ASCs with certain structures are

becoming more popular [1]. Although work continues to formally understand the topo-

logical properties of this space, finding descriptive algorithms with known probability

distributions still requires concentrated effort—especially for models that would be

computational feasible [2].
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2. Challenges and Solutions in Sampling Abstract Complexes

Our goal is to introduce a new sampling algorithm that is both generative and

descriptive on the ASC space Cn with a fixed number of nodes n that can then be used

for sampling within algorithms that require random walks on this space, such as the

oft used Metropolis Algorithms within Markov Chain Monte-Carlo methods employed

throughout computational physics. Due to the combinatorial explosion, the cardinality

of this space becomes very large very quickly with increasing n. Richard Dedekind in

1897 was the first to count the number of such configurations, as labeled ASCs are

related to monotone boolean functions [3]. Dedekind numbers, which count the number

of ASCs with m elements, are only known for m ≤ 8; however, asymptotic formulas

are also known for large m. For the purposes of sampling the unique (nonisomorphic)

configurations in the space, we need to remove the labeling that introduces equivalence

classes of states under label automorphisms. The inequivalent state cardinalities (and

their asymptotic forms) are known only for m ≤ 7, and grow to be on the order

of 5 × 106 by m = 7 [7]. We note that these numbers provide an upper bound on

|Cn|, as they also include nodal removal. Nevertheless, efficiently sampling such a high

dimensional space, especially given the equivalence classes, is a challenge. Since there is

not yet a general way to know the cardinalities of the isomorphism classes of simplicial

complexes on n nodes, we can do little to tune our algorithm to accommodate this

directly. Furthermore, designing either a reversible walk or a sampler with known

transition probabilities on such a constrained space is an additional challenge that we

face.

In the sections to follow, we introduce two new algorithms for sampling on Cn.

We design some basic guiding principles that we show analytically yield a non-local

uncorrelated fully ergodic sampler that exhibits extremely strong sampling properties.

We numerically illustrate its fast and wide sampling capabilities in comparison to a

benchmark model. We also design a local ergodic random walk with known transition

probabilities that, at the cost of autocorrelation, samples even more efficiently. Lastly,

we characterize the autocorrelation of the walk, and numerically test it against our

sampler.
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3. Notation and State Visualization

As there are a variety of ways to encode the data of a state C ∈ Cn, we take the

opportunity to clarify for the reader the representation we will work with.

Definition 1. (Digraph Representation G.)

A state C ∈ Cn is expressed in a leveled digraph representation G[C] if each node

αd in the digraph at level d represents a (d − 1)-simplex in C, with α as a member

of the indexing set on level d, α ∈ [1, |{αd}|]. Defining the set {α1} to the be ‘roots’

of the graph with no incoming edges, the directed adjacency structure is constrained

such that the following conditions are satisfied:

1. Directed edges exist only between levels d→ (d+ 1)

2. The number of parents of node αd>1 must be d

3. The number of roots corresponding to the union of the heads of all dipaths leading

to αd must be d

The last condition guarantees simplicial closure, such that for each simplex, its

boundary set are also nodes in the graph state with the proper completeness. There

can be at most
(
n
d

)
nodes in a level, corresponding to the ASC that is the d-skeleton

of the complete clique complex on n nodes. Similarly, the maximum level is d = n.

This graph representation encodes an ASC uniquely up to α labeling. We denote

the geometric state as one in which the labeling has been removed. For an example of

a labeled state with a canonical ordering, we illustrate in Fig. 2 the complete state on

3 roots corresponding to a 2-simplex.
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Figure 2: A Representative Graph State Corresponding to a 2-simplex

The convenience of this representation allows us to repackage the boundary closure

constraints into the adjacency structure of this digraph, with the directed nature

proving useful for easily identifying branching subgraphs affected by said closure.

Definition 2. (Boolean Map.) Let the complete state on n nodes be denoted C∗n. A

boolean representation of C∗n is given by an ALL-TRUE vector with length
∑n
k=1

(
n
k

)
=

2n − 1, where the elements of the vector correspond to a level-canonical ordering of

nodes in G[C]: αd = 1 indicating existence of node αd and αd = 0 indicating non-

existence.

Define F : C∗n 7→ C as a boolean function that assigns 0 ∨ 1 to each αd ∈ C∗n such

that the conditions in Def. 1 are satisfied.

It is trivial to see that the space of all such functions F 3 F covers Cn. F

provides an arbitrary labeled ASC in the boolean representation that can be again

visualized through the graph representation G[C] and can be thought of as a mask

on C∗n. Isomorphic states are related by boolean functions equivalent up to subset

permutations preserving the constraints.

On C3 for example, the masks [1111100] and [1111010] correspond to the same geo-

metric state and can be shown to be equivalent through the allowed subset permutation

on the elements corresponding to level d = 2.
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4. Kahle’s Inductive Construction

Kahle recently introduced a construction for generating random ASCs [5]. We

describe some of its properties here, using our above notation for consistency.

Definition 3. (Kahle’s Model.) Kahle’s multi-parameter model ∆(n, p2, . . . , pn) builds

an ASC inductively, starting at the edge set with d = 2. For every αd, include the

simplex with probability pd provided it satisfies the boundary conditions in Def. 1.

The full state is built level by level, with constraints on the allowable set of nodes

one can include at a given level due to the boundary existence requirements induced

by the lower levels.

Let |α′d| indicate the number of included simplicies at level d and |α∗d| indicate the

number of possible simplicies given the (d− 1) structure:

|α′d| ≤ |α∗d| ≤
(
n

d

)
.

A labeled state G[C] is generated with probability P∆ given by the following:

P∆(C) =

n∏
d=2

pd
|α′d|(1− pd)|α

∗
d|−|α

′
d| .

As shown by Zuev et al., Kahle’s model is an Exponential Random Simplicial

Complex, implying that it generates a maximum entropy ensemble for an expected

number of simplicies in the skeletal structures (directly constrained by the probability

parameters) [9].

We note that the probability of achieving a particular state decreases as a binomial

power in the number of total nodes in G[C]. Even under a nonuniform probability

weighting of the levels, it can be easily seen that the combinatorial multiplicities of

nodes in each level create a sampling that is highly peaked around states with a given

maximum level for large n—either one that terminates early at the lower levels leaving

no higher structures, one that does the opposite, or one that samples toward the ‘half-

graph’ state with ≈ dn/2e levels in the case when we take the probabilities to be coin

flips. Precise fine tuning would be needed to allow for sampling across a stretch of

widely differing geometries, and the power behavior for finding a particular state will

still not be mitigated. Additionally, the isomorphism classes of geometric states will be
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sampled from with additional probability factors based on their sizes. As the number

density of labeled states concentrates toward those that terminate at the central level,

we will take the model ∆(n, 1
2 , . . . ,

1
2 ) ≡ ∆ 1

2
to benchmark against. Such an algorithm

has a probability lower bound at the complete state as follows:

P̃ 1
2
≡ min
C∈Cn

P 1
2
(C) = P 1

2
(C∗n) = (

1

2
)
∑n

d=2 (n
d) = (

1

2
)2n−n−1 .

We note Kahle’s construction was never claimed to be a fast and broad sampler

on Cn. However, from the class of both descriptive and generative algorithms, and

as a producer of a maximum entropy ensemble, it is an incredibly simple and natural

inductive construction that we feel would serve as a reasonable baseline to compare

against our random sampler on this space with the goal of rounding small probability

sets in mind.

5. The Balanced Algorithm

Our goal is to sample across geometrically inequivalent states with better mixing

than the ∆ 1
2

model. To this end, we define three key properties that we wish our

model to satisfy as heuristics that we intuitively suggest would promote more rapid

and broad sampling.

1. Any isolated node such that |α∗d| = 1 should be given a probability of appearance

of pd = 1
2 . At this level in the induction, there are only two possible states that

can be selected as the rest of the structure is already fixed. Each state should be

given equal probability, as from the vantage of the current step in the algorithm,

there is no differentiating property of either state that would induce a bias in

the probability. For example, the highest dimension simplex should always have

pn = 1
2 .

2. The power law behavior of binomials in the probabilities should be avoided

for individual states, which may also aid the associated issue in over-selecting

multiple isomorphic states.

3. The completely disconnected state on n nodes, Con, should have the same prob-

ability of occurrence as C∗n. This heuristic aims to re-balance the combinatorial
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effects of the intimate coupling between nodes at different levels due to simplicial

closure, since not including any nodes at d = 2 generates Con, while in a con-

struction like ∆, all nodes in G[C] must be independently kept to generate C∗n,

regardless of what probabilities are assigned to each level or even each individual

simplex.

To accomplish this, we first note that we will work inversely from Kahle’s inductive

constructive model and instead consider an equivalent inductive destructive model.

Instead of starting from Con, we start from C∗n and remove nodes starting at d = 2

and work upwards in level. This is equivalent to sampling on the space F, inductively

building the boolean mask starting from the all-ones vector. This is computationally

easier, as instead of checking the complicated closure conditions at each node we would

like to place, we only have to solve for the complete graph state once (which involves

finding all complete subgraphs on n nodes, the NP-complete clique problem), save

this state to disk, and reference it at will. To retain the simpliciality, upon removing

node αd, one simply removes the unique directed tree associated with αd as a starting

node, which is a linear-time computation. In practice, this amounts to inductively

applying a logical AND between the active masking function F and the logical vector

NOT[IN TREE] for the removed head node.

Theorem 1. Let ~Pd = [Pd0 , Pd1 , . . . , Pd(n
d)−d̂

] be a probability vector such that ‖~Pd‖1 =

1 with Pdi denoting the probability that i nodes are chosen uniformly at random and

removed from level d, and d̂ indicating the number of nodes already removed from level

d due to directed tree pruning from lower level removals.

Pdi6=0
≡ Pd =

1

1 +
∑n
k=d

(
n
k

)
− k̂

(1)

Pd0 = 1− (

(
n

d

)
− d̂)Pd

satisfies all properties of conditions 1, 2 and 3.

Proof. We first note that 0 < Pd ≤ 1
2 ∀ d, as the total node set is positive, finite, and

the maximum is achieved in condition 1 as proven below. Additionally, d̂ is defined

such that
(
n
d

)
− d̂ ∈ N. We need to show that 0 < Pd0 < 1 to conclude that this is a

valid probability vector element.
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We only seek to show that (
(
n
d

)
− d̂)Pd < 1, as we already know this quantity

is strictly positive due to above arguments. It should be clear that Pd is inversely

proportional to the total number of nodes left in the state G[C] at step d in the

inductive construction (+1). The combinatorial prefactor is simply the total number

of nodes remaining on level d, which must be less than or equal to the total number of

nodes in the state. Hence, our claim is justified.

Lastly, we can safely conclude that ‖~Pd‖1 = 1 by our construction of Pd0 = 1 −

(
(
n
d

)
− d̂)Pd.

To show that this distribution satisfies the condition 1, it can be seen from the

definitions that

|α∗d| = 1⇔ k̂ =


(
n
d

)
− 1 k = d(

n
k

)
k > d

.

Hence,

Pd||α∗d|=1 =
1

1 +
(
n
d

)
−
(
n
d

)
+ 1 +

∑n
k=d+1 (

(
n
k

)
−
(
n
k

)
)

=
1

2
;

Pd0 = 1− Pd =
1

2
.

Condition 2 is satisfied by algorithmic construction. In choosing groups of i nodes

uniformly at random to remove from level d, we trade the power-binomial behavior in

the probabilities that grow with the number of total nodes in G[C] for a polynomial-

binomial behavior that grows with the number of levels instead. Additionally, the

∆ model will always pick out a specific labeled G[C] insensitive to the number of

isomorphic reachable graphs. In the balanced model, we select from a class of graphs

with a certain number of simplicial elements. Although there can also be many

such graphs that are not isomorphic but have the same number of elements of given

dimensions, we sample the number of elements per level uniformly instead of with

product probabilities, giving a key advantage in sets of small probability measure as

will be seen exactly in the case of n = 3 shown in Section 6.

Satisfying condition 3 requires that the removal of all nodes at the edge level have
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the same probability as removing no nodes at any level:

P2 =

n∏
d=2

Pd0 .

On the left-hand side,

P2 =
1

1 +
∑n
k=2

(
n
k

)
− k̂
|k̂=0

=
1

1 +
∑n
k=2

(
n
k

) (2)

=
1

2n − n
.

On the right-hand side,

n∏
d=2

Pd0 =

n∏
d=2

(1− (

(
n

d

)
− d̂)Pd)|d̂=0

=

n∏
d=2

(1−
(
n
d

)
1 +

∑n
k=d

(
n
k

) ) (3)

=

n∏
d=2

1 +
∑n
k=d

(
n
k

)
−
(
n
d

)
1 +

∑n
k=d

(
n
k

)
=

n∏
d=2

1 +
∑n
k=d+1

(
n
k

)
1 +

∑n
k=d

(
n
k

)
=

1

1 +
∑n
k=2

(
n
k

)
=

1

2n − n
.

Comparing Eq. 2 and 3 demonstrates equality.

�

We mention that the existence of such a solution to these constraints is very non-

trivial. For example, the balancing condition 3 can be shown to have no solution for

the ∆ 1
2

construction for n > 2 as equal probability of removal and acceptance would

clearly require a solution to an equation of the form

x = xy

s.t. 0 < {x, y} < 1 .

Since n = 2 doesn’t admit more than one probability level (equivalently let y = 1), the

conditions admit the trivial solution x = 1
2 .
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For any constant probability model ∆x on n roots enforcing the balancing condition

3 and condition 1 requires the probabilities to be roots of polynomials of the form

x
n(n−1)

2 =
1

2
(1− x)2n−n−2

s.t. 0 < x < 1 .

The computer algebra package Mathematica suggests that this equation does not have

any rational solutions for x with n > 2, indicating that there is likely no natural

combinatorial factor that can be attributed to the probability weighting for this model,

and relaxing condition 1 does not help.

For a generic ∆(n, p2, . . . , pn) model, our constraints require parameters that satisfy

the following equation:

p
(n
2)

2 =
1

2

n−1∏
d=2

(1− pd)(
n
d)

s.t. 0 < pd < 1 .

In the generic case with independent level probabilities, rational solutions only

appear to exist if we remove condition 1; however, this may lead to an large imbalance

in the state probabilities for states that are otherwise inductively identical—taking

us further from our goal of uniformly sampling the geometric states. It is clear that

although possible in theory to balance this algorithm, it requires finding numerical

roots at each order and tuning the probabilities to best counteract the power behavior

in the sampling, unlike the version we have presented that has closed-form analytic

balancing and naturally handles the power structure.

We conclude this section with the probability of finding a given labeled state using

this algorithm. As mentioned, this algorithm samples from classes of complexes with

certain numbers of objects per skeletal level. In order to relate these probabilities to

a specific geometric state, one must know how these classes decompose into noniso-

morphic graphs, as well as the relative sizes of the equivalence classes, introducing an

additional combinatorial factor.

Let the set of all graph isomorphisms between representations G of a geometric

state C be denoted ISO(G[C]) such that the cardinality of this set gives the number

of equivalent ways of representing C under Def. 1.
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At each inductive step, let id nodes be removed from level d out of the total number

of available nodes.

The fraction given by the number of labeled ways the selection can be made,

weighted by the number of equivalent states at that level, yields the leveled combi-

natorial factor. Multiplying these factors over the full induction yields the resulting

combinatorial factor ξ(C) for achieving a particular geometric state:

ξ(C) = |ISO(G[C])|
n∏
d=2

1((n
d)−d̂
id

) .
However, since |ISO(G[C])| is not known in advance, we can only compute proba-

bilities analytically for labeled states as this breaks the symmetry factor. Thus, the

combinatorial factor becomes

ξL(C) =

n∏
d=2

1((n
d)−d̂
id

) .
It is this quantity that we will use in our comparisons to the ∆ model, as they both

consider specific labeled states. In practice, the geometric probabilities are larger, with

the labeled probabilities providing a lower bound.

Let {j} be a boolean sequence representing whether any nodes were masked from

C∗n, with jd ≡ {j}d = 0 as an indicator that no nodes were removed from level d. In

terms of our boolean function F , the elements correspond to a NOT[ALL[Fd]] operation

over the level subsets Fd ⊂ F . The probability of finding a labeled state is given by

the following expression:

P (C) = ξL(C)

n∏
d=2

(P d)δ
1
jd (P d0 )δ

0
jd ,

where δab is the Kronecker delta.

6. Properties of the Balanced Algorithm and Simulation Results

This algorithm samples across a weighted space of paths for inductively building a

given state, as opposed to building a specific state itself. In the case where each such

path yields a unique state up to relabeling, this algorithm will produce the uniform

distribution on the space of complexes. Such a condition is only true for n = {2, 3}
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where ξ(C) = 1 ∀C ∈ C{2,3}, and is illustrated in a direct comparison with the ∆ 1
2

benchmark in Fig. 3. This graph bins the multiplicities for which each geometric state

was sampled, subtracted by the mean multiplicity to give residuals, and normalized by

the total number of samples. The bins themselves do not match to the same geometric

state between the two algorithms, but map to the first encountered representative of

a given state. One can clearly see the uniform sampling from the balanced algorithm,

although given the number of total samples, both algorithms find all 5 geometric states.

All simulations were performed using MATLAB.

Figure 3: Multiplicities Residuals of Unique Geometric States on 10000 Samples Drawn

From C3, Linearly Interpolated

However, for n = 4 and higher, there exist nonisomorphic graphs with the same num-

ber of simplicial elements in each skeleton. This introduces a nonuniform combinatorial

factor that is not possible to account for at the time of writing due to the fact that

there is no analytic algorithm for predicting the number of such inequivalent graphs

and their combinatorial multiplicities. Of course, since we can explicitly compute

the probabilities for generating a labeled state, we mention that this sampler can be

equipped with a Metropolis filter to re-weight the probabilities to produce a uniform

sampling on labeled states.
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We now examine the raw probabilities for sampling a unique labeled state. Directly

comparing the minimal probability in the ∆ 1
2

model with the equivalent complete

state in the balanced model indicates that this state has a much greater probability of

occurrence:

1

2n − n
> (

1

2
)2n−n−1 ∀ n > 2 .

To indicate whether the new algorithm has balanced the probabilities at large and

removed sets of extremely suppressed measure would require looking at the minimal

probability bound for this algorithm and comparing it to C∗n as generated from ∆ 1
2
.

Here, we must use the labeled combinatorial factor ξL for adequate comparison. Due

to the balancing, the probabilities are minimized toward the half-graph state, as this

maximizes the binomial coefficients at each level with many combinatorial possibilities

equivalent to the removal of certain numbers of nodes. As we would like a lower bound,

we set k̂ = 0∀ k. Even though we are removing approximately half of the nodes at

each level, to maximize the binomial contribution, maintaining the full combinatorial

degree of each level will further decrease the probabilities.

In total, this gives an estimate for a lower bound of the following form:

With

E(x) =


x
2 mod (x, 2) = 0

x+1
2 mod (x, 2) = 1

,

P̃ = min
C∈Cn

P (C) ≈
E(n)∏
d=2

1( (n
d)

E((n
d))

)
1

1+
∑n

k=d (n
k)

.

Numerical analysis confirms that P̃ 1
2
≤ P̃ for reasonable values of n before they

become numerically unstable due to the combinatorial explosion, as illustrated in Fig.

4. It is immediately apparent that this algorithm has a much stronger probability

behavior and actively works against the suppression found in a product model.
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Figure 4: A Log-Plot of the Ratio P̃
P̃ 1

2

as a Function of the Number of Roots n

Lastly, we advertised that the combinatorial balancing would allow for a broader

access of states. Below we provide some simulation results to illustrate this property.

Fig. 5 shows the number of unique geometric states encountered while sampling C6 for

a variety of sampling lengths. We can see that the balanced algorithm samples states at

a faster rate than the ∆ 1
2

benchmark test. This is again demonstrated in Fig. 6, where

50000 samples were drawn on C5. The balanced algorithm has appeared to converge,

while the ∆ 1
2

benchmark has yet to find all of the inequivalent states. Naturally, the

states with higher probability of being encountered were among the first to be sampled,

explaining the correlation between the large initial fluctuations in the two algorithms

given the first-representative binning process. However, the multiplicity fluctuations

are much smaller for the balanced algorithm, indicating that the goal of heuristically

rounding the space of state probabilities has been preliminarily accomplished by this

algorithm.
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Figure 5: Number of Unique Geometric States While Sampling C6 as a Function of

the Sample Size, Linearly Interpolated

Figure 6: Multiplicity Residuals of Unique Geometric States on 50000 Samples on C5,

Linearly Interpolated
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7. Local Random Walks

The algorithm introduced in Sec. 5 can be naturally used to perform an ergodic walk

on the ASC space. We can jump from any state to another without a barrier as there is

no dependence on the current state to restrict the space of next available states. This

is a desirable feature from the perspective of sampling on the full space, as there are

no regions of low conductance in the state space where our ‘walk’ can become trapped.

However, when a Metropolis filter is utilized, the fact that this sampler can introduce

transitions between arbitrary configurations may be a detriment to the acceptance

rate if the filter is not naturally tuned to the intrinsic sampling probabilities of the

walk. A local random walk between nearby configurations would be more likely to

permit an acceptance with respect to a Metropolis filter, and as a result, may sample

the full space faster. We would still like to be able to make this local random walk

reversible, however, to ensure the Markov property. However, on the ASC space, the

closure constraints make constructing a reversible local random walk very difficult. It

is even still difficult to find any local random walk where one can compute forward

and backward transition probabilities in order to force the walk to be reversible with

respect to an additional Metropolis filter. In the following sections, we illustrate one

example of a local random walk in the ASC space, and compare its properties to our

global sampler.

8. A Local Random Walk on Abstract Simplicial Complexes

Our goal is to create a local random walk that has more favorable acceptance ratios

for a Metropolis filter that is in some way sensitive to the topological structure of the

current ASC. To that end, we define ‘local’ with respect to a new metric on the ASC

space that is restricted to a unidirectional walk away from a given state.

Definition 4. (Unconstrained Nodes.) Given an ASC in the graph representation

G[C], we define an ‘unconstrained node’ u as one that can be freely added or removed

without requiring or destroying additional containment structure.

An unconstrained node is ‘removable’ if is has no children and is itself not a root

(as the we hold the roots fixed in Cn).
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An unconstrained node is ‘addable’ if it is a member of C∗n \C (the complete graph

with the current state excluded) that has all of its parents in C.

We work with unconstrained nodes for two reasons. Foremost, we would like to

have a walk that admits a range of local movement as opposed to simply a one step

nearest-neighbor walk on individual simplices. If we admit moves that can add or

remove an arbitrary number of nodes within the state space, one needs to worry about

the closure constraints. These constraints will make it very difficult to generate a

walk that has computable probabilities for reversibility, as the number of admissible

additions or removals would be dynamic with each sub-step within the same transition

move, and there can be multiple paths with different probabilities that could lead to

the same state. We want to restrict down this capability, but still admit larger jumps

through the state space. Hence, we work with the space of unconstrained nodes as pure

additions or removals within this space will prevent such issues from arising and admit

a walk with computable probabilities. The restriction that nodes are only added or

removed in a single step additionally guarantees that we do not have any closed loops

within our multi-step walk for a given transition.

Our notion of local distance is therefore the number of added or removed nodes in

a given transition step, actioned by a binary flip on the boolean function representing

C.

The algorithm mimics an exponential ball walk with respect to this distance mea-

sure. First, we compute the total number of nodes one could maximally flip on the

state space. From this set, we establish a normalized probability function based on an

exponential decrease in probability for larger numbers of binary flips. We decide to

either add or remove nodes in a given transition. Once this choice is made, we compute

all addable/removable nodes U for the current configuration. We select a distance δ to

move based on the fixed probability measure. If that distance takes the state outside of

the state space or beyond the number of admissible adds/removes, then the algorithm

resets until an admissible move is found—this is our rejection sampling step similar

to a ball walk on the edge of the state space. Once a good distance is accepted, a

uniformly random selection of those unconstrained nodes u ∈ U have their entries

flipped in the boolean representation. The forward and backward probabilities are
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symmetric with respect to the exponential distance weighting, as this is not dependent

on the state itself. Therefore, a Metropolis filter would only need to account for the

uniform selection step, producing a combinatorial factor of

PB
PF

=

(|UB |
δ

)(|UF |
δ

) . (4)

9. Computational Results

Since our sampler now has local correlations, it becomes necessary to characterize

more carefully the efficiency of the random walk and breadth of sampling. We present

two extreme situations for the initial start of the walk: beginning at a corner of the

state space, C∗n, and beginning at a ‘central’ state consisting of roughly half of the

available simplices being activated. We examine both the multiplicity residuals as

before, as well as the autocorrelation length.

To characterize the autocorrelation length, we use an initial convex sequence method

that involves the greatest common minorant [4]. First, we implement a Metropolis

filter utilizing Eq. 4 such that our samples can be expected to be i.i.d. To measure

autocorrelation, we compute the signed displacement of a transition between two states

C and C ′ as the difference in the sums of their boolean representations:

δ = ‖C‖1 − ‖C ′‖1 ,

where |δ| still corresponds to the number of binary flips between the two, as discussed

in the algorithm. We then look at the cumulative sum of the time sequence of δi values

for each step i in the walk. This gives some sense of a 1-dimensional projection of the

random walk through the ASC space, making it a natural random variable to compute

autocorrelations with.

Let an estimator for the sample mean on s samples be denoted

µ̂s =
1

s

n∑
i=1

δi .

A natural estimator for the auto-covariance function at lag k is given by the follow-

ing:
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γ̂s =
1

s

n−k∑
i=1

(δi − µ̂s)(δi+k − µ̂s) .

The greatest convex minorant at lag k,

Γk = γ2k + γ2k+1,

is a strictly positive, decreasing, and convex function for a reversible Markov chain.

Therefore, examining our estimator Γ̂k for the point at which it becomes nonpositive

indicates the lag where we encounter autocorrelation. Due to the dependence on twice

the lag, our autocorrelation is related to 2k′ when Γ̂k′ ≤ 0.

We can see in Fig. 8 that the local random walk started from a central state, upon

re-weighting with the Metropolis filter, produces autocorrelation out to about 16 steps,

and the walk has a natural rejection rate on the order of 50%.

Figure 7: Time History Observable Example Used to Compute Autocorrelation
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Figure 8: Autocorrelation Statistics for a Random Walk on C6 with 5000 Steps,

Starting from a Central State

Fig. 9, produced starting from a corner state, tells not much of a different story.

This indicates that the edges in the state space are not incredibly narrow, and that

this random walk is good at working its way out of those corners. We see less than

double the autocorrelation, which is not unexpected due to the time spent in the

region of small state density. A burn-in process would reduce this down to toward the

autocorrelation lengths found in the central case.
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Figure 9: Autocorrelation Statistics for a Random Walk on C6 with 5000 Steps,

Starting from a Corner State

We lastly compare the efficiency of all of these algorithms for sampling geometrically

unique states. As seen in Figs. 10 and 11, the local random walk performs remarkably

better, sampling more states with less accepted steps. This lends credence to the notion

that the best sampler on this space would likely be a linear combination of the two

Markov chains. Since such a construction still retains its theoretical properties, we can

achieve the best of both algorithms by choosing to perform a local walk with some

large probability to reap the rewards of the rapid sampling, while occasionally using

the balanced sampler to avoid regions of narrow conductance bands and to promote

ergodicity and large nonlocal transitions.
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Figure 10: A Comparison of the Unique Geometric States Sampled on C6 as a Function

of Accepted Transitions for All Three Samplers

Figure 11: A Comparison of the Multiplicity Residuals of Unique Geometric States

Sampled on C6 for All Three Samplers, Linearly Interpolated
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10. Discussion on the New Samplers

As is the case with a wide variety of combinatorial spaces, it is often very difficult

to develop a sampling procedure with transition probabilities that can a priori sample

such that the uniform distribution is the stationary distribution without the use of

a Metropolis filter. In the case of abstract simplicial complexes, the unknown iso-

morphism classes of configurations make this problem seemingly intractable. We have

introduced an algorithm that uses three simple principles to attempt to re-balance

the sampling such that the algorithm more readily samples inequivalent configurations

with a wide breadth across the space. Our analytical results show that this algorithm

has a worst case lower-bound on state probabilities that is larger than the equivalent

sampling through a uniformly weighted Kahle process, which we used as an unop-

timized benchmark. Our simulations confirm that a direct comparison between the

two algorithms favors the balanced algorithm when attempting to sample across the

geometric space of states.

We have also discussed a local random walk that can be made reversible. The

advantage of this walk is to increase the acceptance rates for a Metropolis filter when

sampling nearby states as opposed to large jumps in the state space, and we have

illustrated through simulation its efficiency in also sampling from a wide range of

states in the ASC space. However, in some applications with Metropolis filters, this

walk may be sensitive to trapping regions, as it is not able to explore any possible

configuration in a single transition step. Thus, a combination of our local walk and

the balanced sampler can be used to promote ergodicity and rapid sampling.

Future work toward finding a better generative algorithm for sampling across equiva-

lence classes of large random abstract simplicial complexes while maintaining analytical

control is necessary in order to begin to probe the very large space of states. With

a variety of applications on the horizon, we anticipate this problem being approached

from a broad range of perspectives, and we hope to have provided some insight through

some practical, simple algorithms that accomplish the first steps toward this task.
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